
Variance-Reduced Methods
for Machine Learning
This article discusses stochastic variance-reduced optimization methods for problems
where multiple passes through batch training data sets are allowed.

By ROBERT M. GOWER , MARK SCHMIDT, FRANCIS BACH, AND PETER RICHTÁRIK

ABSTRACT | Stochastic optimization lies at the heart of

machine learning, and its cornerstone is stochastic gradient

descent (SGD), a method introduced over 60 years ago. The last

eight years have seen an exciting new development: variance

reduction for stochastic optimization methods. These variance-

reduced (VR) methods excel in settings where more than one

pass through the training data is allowed, achieving a faster

convergence than SGD in theory and practice. These speedups

underline the surge of interest in VR methods and the fast-

growing body of work on this topic. This review covers the

key principles and main developments behind VR methods for

optimization with finite data sets and is aimed at nonexpert

readers. We focus mainly on the convex setting and leave

pointers to readers interested in extensions for minimizing

nonconvex functions.

KEYWORDS | Machine learning; optimization; variance

reduction.

I. I N T R O D U C T I O N
One of the fundamental problems studied in the field of
machine learning is how to fit models to large data sets. For
example, consider the classic linear least squares model

x� ∈ argmin
x∈Rd

�
1

n

n�
i=1

(a�
i x − bi)

2

�
. (1)

Manuscript received January 8, 2020; revised May 8, 2020; accepted June 8,
2020. Date of current version October 27, 2020. This work was supported in part
by the Canada CIFAR AI Chair Program and in part by the KAUST Research
Baseline Scheme. (Corresponding author: Robert M. Gower.)

Robert M. Gower is with LTCI, Télécom Paris, Institut Polytechnique de Paris,
75634 Paris, France (e-mail: gower.robert@gmail.com).

Mark Schmidt is with CCAI Affiliate Chair (Amii), The University of British
Columbia, Vancouver, BC V6T 1Z4, Canada.

Francis Bach is with Inria, PSL Research University, 75006 Paris, France.

Peter Richtárik is with the Department of Computer Science, King Abdullah
University of Science and Technology, Thuwal 23955, Saudi Arabia.

Digital Object Identifier 10.1109/JPROC.2020.3028013

Here, the model has d parameters given by the vector x ∈
R

d, and we are given n data points {ai, bi} consisting of
feature vectors ai ∈ R

d and target values (labels) bi ∈ R.
Fitting the model consists of tuning these d parameters so
that the model’s output a�

i x is “close” (on average) to the
targets bi. More generally, we might use some loss function
fi(x) to measure how close our model is to the ith data
point

x� ∈ argmin
x∈Rd

�
f(x) :=

1

n

n�
i=1

fi(x)

�
. (2)

If fi(x) is large, we say that our model’s output is far from
the data, and if fi(x) = 0, we say that our model perfectly
fits the ith data point. The function f(x) represents the
average loss of our model over the full data set. A problem
of the form (2) characterizes the training of not only linear
least squares, but also many models studied in machine
learning. For example, the logistic regression model solves

x� ∈ argmin
x∈Rd

�
1

n

n�
i=1

log(1 + exp(−bia
�
i x)) +

λ

2
�x�2

�
(3)

where we are now considering a binary classification task
with bi ∈ {−1, +1} (and the predictions are made using
the sign of a�

i x). Here, we have also used (λ/2)�x�2 :=

(λ/2)
�d

i=1 x2
i as a regularizer. This and other regularizers

are commonly added to avoid overfitting to the given data,
and in this case, we replace each fi(x) by fi(x)+(λ/2)�x�2.
The training procedure in most supervised machine learn-
ing models can be written in the form (2), including
L1-regularized least squares, support vector machines
(SVM), principal component analysis, conditional random
fields, and deep neural networks.

A key challenge in modern instances of problem (2) is
that the number of data points n can be extremely large.
We regularly collect the data sets going beyond terabytes,
from sources such as the Internet, satellites, remote sen-
sors, financial markets, and scientific experiments. One of
the most common ways to cope with such large data sets

1968 PROCEEDINGS OF THE IEEE | Vol. 108, No. 11, November 2020

0018-9219 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Skolkovo Institute of Science & Technology. Downloaded on June 10,2021 at 07:54:19 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2268-9780

Gower et al.: Variance-Reduced Methods for Machine Learning

Fig. 1. Comparison of the GD, AGD (accelerated GD [50]), SGD, and

ADAM [30] methods to the VR methods SAG and SVRG on a logistic

regression problem based on the mushrooms data set [7], where

n � 8124 and d � 112.

is to use stochastic gradient descent (SGD) methods that
use a few randomly chosen data points in each of their
iterations. Furthermore, there has been a recent surge in
interest in variance-reduced (VR) stochastic gradient meth-
ods that converge faster than classic stochastic gradient
methods.

A. Gradient and Stochastic Gradient Descent

The classic gradient descent (GD) method applied to
problem (2) takes the form

xk+1 = xk − γ
1

n

n�
i=1

∇fi(xk) (4)

where γ > 0 is a fixed stepsize.1 At each iteration, the GD
method needs to calculate a gradient ∇fi(xk) for every ith
data point, and thus, GD takes a full pass over the n data
points at each iteration. This expensive cost per iteration
makes GD prohibitive when n is large.

Consider, instead, the SGD method

xk+1 = xk − γ∇fik (xk) (5)

first introduced by Robbins and Monro [64]. It avoids the
heavy cost per iteration of GD by using one randomly
selected ∇fik (xk) gradient instead of the full gradient.
In Fig. 1, we see how the SGD method makes dramatically
more progress than GD (and even the “accelerated” GD

1The classic way to implement GD is to determine γ as the
approximate solution to minγ>0 f(xk − γ∇f(xk)). This is called a
line search since it is an optimization over a line segment [3], [45]. This
line search requires multiple evaluations of the full objective function
f(xk), which, in our setting, is too expensive, since this would require
loading all the data points multiple times. This is why we use fixed
constant stepsize instead.

method) in the initial phase of optimization. Note that this
figure plots the progress in terms of the number of epochs,
which is the number of times that we have computed n

gradients of individual training examples. The GD method
does one iteration per epoch, while the SGD method does n

iterations per epoch. We compare SGD and GD in terms of
epochs taken since we assume that n is very large and that
the main cost of both methods is computing the ∇fi(xk)

gradients.

B. Issue With Variance

Observe that if we choose the random index ik ∈
{1, . . . , n} uniformly, P [ik = i] = 1

n
for all i, then ∇fik (xk)

is an unbiased estimate of ∇f(xk) since

E [∇fik (xk) | xk] =
n�

i=1

1

n
∇fi(xk) = ∇f(xk). (6)

Thus, even though the SGD method is not guaranteed to
decrease f in each iteration, on average, the method is
moving in the direction of the negative full gradient, which
is a direction of descent.

Unfortunately, having an unbiased estimator of the gra-
dient is not enough to guarantee convergence of the iter-
ates (5) of SGD. To illustrate this, in Fig. 2 (left), we have
plotted the iterates of SGD with a constant stepsize applied
to a logistic regression function using the fourclass data
set from LIBSVM [7]. The concentric ellipses in Fig. 2 are
the level sets of this function, that is, the points x on a
single ellipse are given by {x : f(x) = c} for a particular
constant c ∈ R. Different constants c give different ellipses.

The iterates of SGD do not converge to the solution (the
green star) and, instead, form a point cloud around the
solution. In contrast, we have plotted the iterates of a
VR method stochastic average gradient (SAG) (which we
present later) in Fig. 2 using the same constant stepsize.

The reason why SGD does not converge in this example
is because the stochastic gradients themselves do no con-
verge to zero, and thus, the method (5) with a constant
stepsize never stops. This is in contrast with GD, where the
method naturally stops since ∇f(xk) → 0 as xk → x�.

Fig. 2. Level set plot of 2-D logistic regression with the iterates of

SGD (left) and SAG (right) with a constant stepsize. The green star is

the x∗ solution.

Vol. 108, No. 11, November 2020 | PROCEEDINGS OF THE IEEE 1969

Authorized licensed use limited to: Skolkovo Institute of Science & Technology. Downloaded on June 10,2021 at 07:54:19 UTC from IEEE Xplore. Restrictions apply.

Gower et al.: Variance-Reduced Methods for Machine Learning

C. Classic Variance Reduction Methods

There are several classic techniques for dealing with the
nonconvergence due to the variance in the ∇fi(xk) values.
For example, Robbins and Monro [64] address the issue of
the variance using a sequence of decreasing stepsizes γk.
This forces the product γk∇fik (xk) to converge to zero.
However, it is difficult to tune this sequence of decreasing
stepsizes so that the method does not stop too early (before
reaching the solution) or too late (thus wasting resources).

Another classic technique for decreasing the variance
is to use the average of several ∇fi(xk) values in each
iteration to get a better estimate of the full gradient ∇f(x).
This is called minibatching and is especially useful when
multiple gradients can be evaluated in parallel. This leads
to an iteration of the form

xk+1 = xk − γ
1

|Bk|
�

i∈Bk

∇fi(xk) (7)

where Bk ⊂ {1, . . . , n} is a set of random indices and
|Bk| is the size of Bk. When Bk is sampled uniformly
with replacement, the variance of this gradient estimator
is inversely proportional to the “batch size” |Bk|, so we
can decrease the variance by increasing the batch size.2

However, the cost of this iteration is proportional to the
batch size. Thus, this form of variance reduction comes at
a computational cost.

Yet, another common strategy to decrease variance and
improve the empirical performance of SGD is to add
“momentum,” an extra term based on the directions used
in past steps. In particular, SGD with momentum takes the
form

mk = βmk−1 + ∇fik (xk) (8)

xk+1 = xk − γmk (9)

where the momentum parameter β is in the range (0, 1).
Setting m0 = 0 and expanding the update of mk in (8),
we have that mk is a weighted average of the previous
gradients

mk =

k�
t=0

βk−t∇fit(xt). (10)

Thus, mk is a weighted sum of the stochastic gradients.
Moreover, since

�k
t=0 βk−t = (1 − βk+1)/(1 − β), we have

that (1 − β)/(1 − βk−1)mk is a weighted average of sto-
chastic gradients. If we compare this with the expression
of the full gradient that is a plain average, ∇f(xk) =

(1/n)
�n

i=1 ∇fi(xk), we can interpret (1 − β)/(1 − βk)mk

(and mk) as an estimate of the full gradient. This weighted
sum decreases the variance, but it also brings about a key
problem. Since the weighted sum (10) gives more weight
to recently sampled gradients, it does not converge to the

2If we sample without replacement, the variance decreases at a faster
rate (see [42, Sec. 2.7]), and with |Bk| = n, the variance is zero.

full gradient ∇f(xk), which is a plain average. The first
VR method that we will see in Section II-A contours this
issue by using a plain average, as opposed to any weighted
average.

D. Modern Variance Reduction Methods

As opposed to classic methods that use one or more
∇fi(xk) directly as an approximation of ∇f(xk), VR meth-
ods use ∇fi(xk) to update an estimate gk ∈ R

d of the
gradient so that gk ≈ ∇f(xk). With this gradient estimate,
we then take approximate gradient steps of the form

xk+1 = xk − γgk (11)

where γ > 0 is again the stepsize. To make (11) converge
with a constant stepsize, we need to ensure that the
variance of our gradient estimate gk converges to zero, that
is,3

E
��gk −∇f(xk)�2� −→

k→∞
0 (12)

where the expectation is taken with respect to all the
random variables in the algorithm up to iteration k. Prop-
erty (12) ensures that the VR method will stop when
reaching the optimal point. We take (12) to be a defining
property of VR methods and, thus, refer to it as the VR
property. Note that “reduced” variance is a bit misleading
since the variance converges to zero. The property (12) is
responsible for the faster convergence of VR methods in
theory (under suitable assumptions) and in practice as we
see in Fig. 1.

E. First Example of a VR Method: SGD�

One easy fix that makes the SGD recursion in (5) con-
verge without decreasing the stepsize is to simply shift
each gradient by ∇fi(x�), that is, to use the following
method:

xk+1 = xk − γ(∇fik (xk) −∇fik (x�)) (13)

called SGD� [22]. We note that it is unrealistic that we
would know each ∇fi(x�), but we use SGD� as a simple
illustration of the properties of VR methods. Furthermore,
many VR methods can be seen as an approximation of
the SGD� method; instead of relying on knowing each
∇fi(x�), these methods use approximations that converge
to ∇fi(x�).

Note that SGD� uses an unbiased estimate of the full
gradient. Indeed, since ∇f(x�) = 0,

E [∇fik (xk) −∇fik (x�)] = ∇f(xk) −∇f(x�) = ∇f(xk).

3To be exact, (12) is not explicitly the total variance of gk but rather
the trace of the covariance matrix of gk.

1970 PROCEEDINGS OF THE IEEE | Vol. 108, No. 11, November 2020

Authorized licensed use limited to: Skolkovo Institute of Science & Technology. Downloaded on June 10,2021 at 07:54:19 UTC from IEEE Xplore. Restrictions apply.

Gower et al.: Variance-Reduced Methods for Machine Learning

Furthermore, SGD� naturally stops when it reaches the
optimal point since; for any i,

(∇fi(x) −∇fi(x�))|x=x� = 0.

Next, we note that SGD� satisfies the VR property (12) as
xk approaches x� (for continuous ∇fi) since

E
��gk−∇f(xk)�2

�
= E

��∇fi(xk) −∇fi(x�) −∇f(xk)�2
�

≤ E
��∇fi(xk) −∇fi(x�)�2�

where we used Lemma 2 with X = ∇fi(xk) − ∇fi(x�)

and then used that E [∇fi(xk) −∇fi(x�)] = ∇f(xk). This
property implies that SGD� has a faster convergence rate
than classic SGD methods, as we detail in Appendix B.

F. Faster Convergence of VR Methods

In this section, we introduce two standard assumptions
that are used to analyze VR methods and discuss the
speedup over classic SGD methods that can be obtained
under these assumptions. Our first assumption is Lipschitz
continuity of the gradients, meaning that the gradients
cannot change arbitrarily fast.

Assumption 1: The function f is differentiable and
L-smooth, meaning that

�∇f(x) −∇f(y)� ≤ L�x − y� (14)

for all x and y and some 0 < L < ∞. Each fi :

R
d → R is differentiable, Li-smooth, and let Lmax :=

max{L1, . . . , Ln}.
While this is typically viewed as a weak assumption,

in Section IV, we comment on VR methods that apply
to nonsmooth problems. This L-smoothness assumption
has an intuitive interpretation for univariate functions that
are twice differentiable: it is equivalent to assuming that
the second derivative is bounded by L, |f ��(x)| ≤ L

for every x ∈ R
d. For multivariate twice-differentiable

functions, it is equivalent to assuming that the singular
values of the Hessian matrix ∇2 f(x) are upper bounded
by L for every x ∈ R

d. For the least squares problem (1),
the individual Lipschitz constants Li are given by Li =

�ai�2, while, for the L2-regularized logistic regression
problem (3), we have Li = 0.25�ai�2 + λ.

The second assumption we consider in this section lower
bounds the curvature of the functions.

Assumption 2: The function f is μ-strongly convex,
meaning that the function x
→ f(x) − μ

2
�x�2 is convex

for some μ > 0. Furthermore, fi : R
d → R is convex for

each i = 1, . . . , n.
This is a strong assumption. While each fi is convex

in the least squares problem (1), the overall function
f is strongly convex if and only if the design matrix
A := [a1, . . . , an] has full row rank. On the other hand,

Fig. 3. Here, we graph the level sets two logistic regression loss

functions. The left level sets are each of a well-conditioned logistic

function with κ ≈ 1. The right level sets are of an ill-conditioned

logistic function with κ� 1.

the L2-regularized logistic regression problem (3) satisfies
this assumption with μ ≥ λ due to the presence of the
regularizer. As we detail in Section IV, it is possible to relax
the strong convexity assumption, as well as the assumption
that each fi is convex.

An important problem class where the assumptions are
satisfied is the problems of the form

x� ∈ argmin
x∈Rd

�
f(x) =

1

n

n�
i=1

�i(a
�
i x) +

λ

2
�x�2

�
(15)

in the case when each “loss” function �i : R
→ R is twice
differentiable with ���i bounded between 0 and some upper
bound M . This includes a variety of loss functions with L2-
regularization in machine learning, such as least squares
(li(α) = (α − bi)

2), logistic regression, probit regression,
the Huber robust regression, and a variety of others. In this
setting, for all i, we have Li ≤ M�ai�2 + λ and μ ≥ λ.

The convergence rate of GD under these assumptions
is determined by the ratio κ := L/μ, which is known as
the condition number of f . This ratio is always greater
than or equal to 1, and when it is significantly larger
than 1, the level sets of the function become very elliptical,
which causes the iterates of the GD method to oscillate.
This is illustrated in Fig. 3. In contrast, when κ is close
to 1, GD converges quickly.

Under Assumptions 1 and 2, VR methods converge at a
linear rate. We say that the function values {f(xk)} of a
randomized method converge linearly (in expectation) at
a rate of 0 < ρ ≤ 1 if there exists a constant C > 0 such
that

E [f(xk)] − f(x�) ≤ (1 − ρ)kC = O(exp(−kρ)) ∀k. (16)

This is in contrast to classic SGD methods that only
rely on an unbiased estimate of the gradient in each
iteration, which, under these assumptions, can only obtain
the sublinear rate

E [f(xk)] − f(x�) ≤ O(1/k).

Vol. 108, No. 11, November 2020 | PROCEEDINGS OF THE IEEE 1971

Authorized licensed use limited to: Skolkovo Institute of Science & Technology. Downloaded on June 10,2021 at 07:54:19 UTC from IEEE Xplore. Restrictions apply.

Gower et al.: Variance-Reduced Methods for Machine Learning

Thus, classic SGD methods become slower the longer we
run them, while VR methods continue to cut the error by
at least a fixed fraction in each step.

As a consequence of (16), we can determine the number
of iterations needed to reach a given tolerance ε > 0 on the
error as follows:

k ≥ 1

ρ
log

�
C

ε

�
, then E [f(xk)] − f(x�) ≤ ε. (17)

The smallest k satisfying this inequality is known as the
iteration complexity of the algorithm. In the following,
we give the iteration complexity and the cost of one
iteration in terms of n for the basic variant of GD, SGD,
and VR methods:

Algorithm # Iterations Cost of 1 Iteration
GD O(κ log(1/ε)) O(n)
SGD O(κmax(1/ε)) O(1)
VR O((κmax + n) log(1/ε)) O(1)

The total runtime of an algorithm is given by the product
of the iteration complexity and the iteration runtime.
Above, we have used κmax := (maxi Li)/μ. Note that
κmax ≥ κ; thus, the iteration complexity of GD is smaller
than that of the VR methods.4 However, the VR methods
are superior in terms of total runtime since each iteration
of GD costs n times more than an iteration of a VR method.5

Classic SGDmethods have the advantage that their runtime
and their convergence rate do not depend on n, but it does
have a much worse dependence on the tolerance ε, which
explains SGD’s poor performance when the tolerance is
small.6

In Appendix B, we give a simple proof showing that the
SGD� method has the same iteration complexity as the VR
methods.

II. B A S I C V A R I A N C E - R E D U C E D
M E T H O D S
The first wave of VR methods that achieve the conver-
gence rate from the previous section started with the SAG
method [37], [65]. This was followed shortly after by
the stochastic dual coordinate ascent (SDCA) [63], [70],
MISO [44], stochastic VR gradient (SVRG/S2GD) [28],
[32], [43], [84], and SAGA (SAG “amélioré”) [13] meth-
ods. In this section, we present several of these original
methods, while Section IV covers more recent methods
that offer improved properties in certain settings over these
original methods.

A. Stochastic Average Gradient

The first VR method is based on mimicking the structure
of the full gradient. Since the full gradient ∇f(x) is a plain

4In Section IV, we discuss how nonuniform sampling within
VR methods leads to a faster rate, depending on the mean L̄ :=
(1/n)

�
i Li rather than on the maximum maxi Li.

5Since Lmax ≤ nL.
6We have omitted an additional term for the SGD iteration com-

plexity of the form O(σ2/με), where σ2 ≥ Ei[‖∇fi(x∗)‖2]
(see [49, Th. 2.1].

average of the ∇fi(x) gradients, our estimate gk of the full
gradient should be an average of estimates of the ∇fi(x)

gradients. This idea leads us to our first VR method: the
SAG method.

The SAG method [37], [65] is a stochastic variant of the
earlier incremental aggregated gradient (IAG) method [4].
The idea behind SAG is to maintain an estimate vi

k ≈
∇fi(xk) for each data point i. We then use the average
of the vi

k values as our estimate of the full gradient, that is,

ḡk =
1

n

n�
j=1

vj
k ≈ 1

n

n�
j=1

∇fj(xk) = ∇f(xk). (18)

At each iteration, SAG samples ik ∈ {1, . . . , n} and updates
vj

k using

vj
k+1 =

�
∇fik (xk), if j = ik

vj
k, if j = ik

(19)

where each v0
i might be initialized to zero or to an approx-

imation of ∇fi(x0). As we approach a solution x�, each vi

converges to ∇fi(x�), which gives us the VR property (12).
To implement SAG efficiently, we need to take care in

computing ḡk using (18) since this requires summing up n

vectors in R
d, and since n can be very large, computing

this sum can be very costly. Fortunately, we can avoid
computing this summation from scratch every iteration
since only one vi

k term will change in the next iteration.
That is, suppose that we sample the index ik on iteration
k. It follows from (18) and (19) that

ḡk =
1

n

n�
j=1,j �=ik

vj
k +

1

n
vik

k

=
1

n

n�
j=1,j �=ik

vj
k−1+

1

n
vik

k

	
Since vj

k−1 =vj
k for all j = ik

= ḡk−1 − 1

n
v

ik
k−1 +

1

n
v

ik
k

	
Plus and minus 1

n
v

ik
k−1

.

(20)

Since vj
k−1 are simply copied over to vj

k, when implement-
ing SAG, we can simply store one vector vj for each j. This
implementation is illustrated in Algorithm 1.

The SAG method was the first stochastic method to
enjoy linear convergence with an iteration complexity of
O((κmax +n) log(1/ε)), using a stepsize of γ = O(1/Lmax).
This linear convergence can be seen in Fig. 1. Note that
since an Lmax-smooth function is also L�-smooth for any
L� ≥ Lmax, this method obtains a linear convergence rate
for any sufficiently small stepsize. This is in contrast to clas-
sic SGD methods, which only obtains sublinear rates and
only under difficult-to-tune-in-practice decreasing stepsize
sequences.

At the time, the linear convergence of SAG was a
remarkable breakthrough given that SAG only computes a
single stochastic gradient (processing a single data point)
at each iteration. However, the convergence proof by

1972 PROCEEDINGS OF THE IEEE | Vol. 108, No. 11, November 2020

Authorized licensed use limited to: Skolkovo Institute of Science & Technology. Downloaded on June 10,2021 at 07:54:19 UTC from IEEE Xplore. Restrictions apply.

Gower et al.: Variance-Reduced Methods for Machine Learning

Algorithm 1 SAG Method
1: Parameters: stepsize γ > 0
2: Initialize: x0, v

i = 0 ∈ R
d for i = 1, . . . , n

3: for k = 1, . . . , T − 1 do
4: Sample ik ∈ {1, . . . , n}
5: ḡk = ḡk−1 − 1

n
vik

6: vik = ∇fik
(xk)

7: ḡk = ḡk +
1
n

vik

8: xk+1 = xk − γḡk

9: Output: xT

Schmidt et al. [65] is notoriously difficult and relies on
computer-verified steps. What specifically makes SAG hard
to analyze is that gk is a biased estimate of the gradient.
Next, we introduce the SAGA method, a variant of SAG
that uses the concept of covariates to make an unbiased
variant of the SAG method that has similar performance
but is easier to analyze.

B. SAGA

A common way to reduce the variance of the basic
unbiased estimate ∇fik (xk) is by using what is known as
covariates (or “control variates”). Let vi ∈ R

d be a vector
for i = 1, . . . , n. Using these vectors, we can rewrite our
full gradient as

∇f(x) =
1

n

n�
i=1

(∇fi(x) − vi + vi)

=
1

n

n�
i=1

�
∇fi(x) − vi +

1

n

n�
j=1

vj

�

:=
1

n

n�
i=1

∇fi(x, v) (21)

where ∇fi(x, v) := ∇fi(x)− vi + 1
n

�n
j=1 vj . Now, we can

build an unbiased estimate of the full gradient ∇f(x) by
sampling a single ∇fi(x, v) uniformly for i ∈ {1, . . . , n}.
That is, we can solve (2) by applying the SGD method with
the gradient estimate

gk = ∇fik (xk, v) = ∇fik (xk) − vi +
1

n

n�
j=1

vj . (22)

To see the effect of the choice of the vi ’s on the variance
of gk, substituting gk = ∇fik (xk, v) and using Ei∼ 1

n
[vi] =

(1/n)
�n

j=1 vj in (12) give

(12) = E

�∇fi(xk) − vi + Ei∼ 1

n
[vi −∇fi(xk)]�2

�
≤ E

�∇fi(xk) − vi�2

�
(23)

where we used Lemma 2 with X = ∇fi(xk) − vi.
This bound (23) shows us that we obtain the VR prop-
erty (12) if vi approaches ∇fi(xk) as k grows. This is
why we refer to the vi ’s as covariates. We are free to
choose any vi, so we can choose them to reduce the
variance.

As an example, the SGD� method (13) also implements
this approach with vi = ∇fi(x�). However, again, this is
not practical since often we do not know ∇fi(x�). A more
practical choice for vi is the gradient ∇fi(x̄i) around a
point x̄i ∈ R

d that we do know. SAGA uses a reference
point x̄i ∈ R

d for each function fi and uses the covariate
vi = ∇fi(x̄i) where each x̄i will be the last point for which
we evaluated ∇fi(x̄i). Using these covariates, we can build
a gradient estimate following (22), which gives

gk = ∇fik (xk) −∇fik (x̄ik) +
1

n

n�
j=1

∇fj(x̄j). (24)

To implement SAGA, instead of storing the n reference
points x̄i, we can store the gradients ∇fi(x̄i). That is,
let vj = ∇fj(x̄j) for j ∈ {1, . . . , n}, and similar to SAG,
we update vj of one random gradient in each iteration.
We formalize the SAGA method as Algorithm 2, which is
similar to the implementation of SAG (see Algorithm 1);
except now, we store the previously known gradient of fik

in a dummy variable vold so that we can then form the
unbiased gradient estimate (24).

Algorithm 2 SAGA

1: Parameters: stepsize γ > 0
2: Initialize: x0, v

i = 0 ∈ R
d for i = 1, . . . , n

3: for k = 1, . . . , T − 1 do
4: Sample ik ∈ {1, . . . , n}
5: vold = vik

6: vik = ∇fik
(xk)

7: xk+1 = xk − γ
(
vik − vold + ḡk

)

8: ḡk = ḡk−1 +
1
n

vik − 1
n

vold

9: Output: xT

The SAGA method has an iteration complexity of
O((κmax + n) log(1/ε)) using a stepsize of γ = O(1/Lmax)

as in SAG but with a much simpler proof. However, as with
SAG, the SAGA method needs to store the auxiliary vectors
vi ∈ R

d for i = 1, . . . , n, which amounts to an O(nd)

storage. This can be infeasible when both d and n are large.
We detail, in Section III, how we can reduce this memory
requirement for common models, such as regularized lin-
ear models (15).

When the n auxiliary vectors can be stored in mem-
ory, SAG and SAGA tend to perform similarly. When this
memory requirement is too high, the SVRG method that
we review next is a good alternative. The SVRG method
achieves the same convergence rate and is often nearly as

Vol. 108, No. 11, November 2020 | PROCEEDINGS OF THE IEEE 1973

Authorized licensed use limited to: Skolkovo Institute of Science & Technology. Downloaded on June 10,2021 at 07:54:19 UTC from IEEE Xplore. Restrictions apply.

Gower et al.: Variance-Reduced Methods for Machine Learning

Algorithm 3 SVRG Method
1: Parameters stepsize γ > 0
2: Initialization x̄0 = x0 ∈ R

d

3: for s = 1, 2, . . . do
4: Compute and store ∇f(x̄s−1)
5: x0 = x̄s−1

6: Choose the number of inner-loop iterations t
7: for k = 0, 1, . . . , t − 1 do
8: Sample ik ∈ {1, . . . , n}
9: gk = ∇fik

(xk) −∇fik
(x̄s−1) + ∇f(x̄s−1)

10: xk+1 = xk − γgk

11: x̄s = xt.

fast in practice but only requires O(d) memory for general
problems.

C. SVRG

Prior to SAGA, the first works to use covariates used
them to address the high memory required of SAG [28],
[43], [84]. These works build covariates based on a fixed
reference point x̄ ∈ R

d at which we have already computed
the full gradient ∇f(x̄). By storing x̄ and ∇f(x̄), we can
implement the update (24) using x̄j = x̄ for all j with-
out storing the individual gradients ∇fj(x̄). In particular,
instead of storing these vectors, we compute ∇fik(x̄) in
each iteration using the stored reference point x̄. Originally
presented under different names by different authors, this
method has come to be known as the SVRG method,
following the naming of [28] and [84].

We formalize the SVRG method in Algorithm 3.
Using (23), we have that the variance of the gradient
estimate gk is bounded by

E
��gk −∇f(xk)�2

� ≤ E
��∇fi(xk) −∇fi(x̄)�2

�
≤ L2

max�xk − x̄�2

where the second inequality uses the Li-smoothness of
each Li.7 Notice that the closer x̄ is to xk, the smaller the
variance of the gradient estimate.

To make the SVRG method work well, we need to trade
off the cost of updating the reference point x̄ frequently
and, thus, having to compute the full gradient, with the
benefits of decreasing the variance. To do this, the refer-
ence point is updated every t iterations to be a point close
to xk (see line 11 of Algorithm II-C). That is, the SVRG
method has two loops: one outer loop in s where the
reference gradient ∇f(x̄s−1) is computed (line 4), and one
inner loop where the reference point is fixed, and the inner
iterates xk are updated (line 10) according to stochastic
gradient steps using (22).

7When each fi is also convex, we can derive the bound
E[‖∇f(x̄s−1)−∇f(xk)‖2] ≤ 4Lmax(f(xk)− f(x∗)+ f(x̄s−1)−
f(x∗)) using analogous proof to Lemma 1. This bound on the variance
is key to proving a good convergence rate for SVRG in the convex setting.

In contrast to SAG and SAGA, SVRG requires O(d)

memory only. The downsides of SVRG are: 1) we have an
additional parameter t, the length of the inner loop, which
needs to be tuned and 2) two gradients are computed per
iteration and the full gradient needs to be computed every
time the reference point is changed.

Johnson and Zhang [28] showed that SVRG has iter-
ation complexity O((κmax + n) log(1/ε)), similar to SAG
and SAGA. This was shown assuming that the number of
inner iterations t is sampled uniformly from {1, . . . , m},
where a complex dependence must hold between Lmax, μ,
the stepsize γ, and t. In practice, SVRG tends to work well
by using γ = O(1/Lmax) and inner loop length t = n,
which, is the setting, we used in Fig. 1.

There are, now, many variations on the original SVRG
method. For example, there are variants that use alter-
native distributions for t [32] and variants that allow
stepsizes of the form O(1/Lmax) [27], [33], [35]. There
are also variants that use a minibatch approximation
of ∇f(x̄) to reduce the cost of these full-gradient eval-
uations and that grow the minibatch size in order to
maintain the VR property [17], [26]. There are variants
that repeatedly update gk in the inner loop according
to [54]

gk = ∇fik (xk) −∇fik (xk−1) + gk−1 (25)

which provides a more local approximation. Using this
continuous update variant (25) has shown to have distinct
advantages in minimizing nonconvex functions, as we
briefly discuss in Section IV-G. Finally, note that SVRG can
use the values of ∇f(x̄s) to help decide when to terminate
the algorithm.

D. SDCA and Variants

A drawback of SAG and SVRG is that their stepsize
depends on Lmax, which may not be known for some
problems. One of the first VR methods (predating SVRG)
was the SDCA method [70] that extended recent work on
coordinate descent methods to the finite-sum problem.8

The intuition behind SDCA, and its variants, is that
the coordinates of the gradient provide a naturally VR
estimate of the gradient. That is, let j ∈ {1, . . . , d} and
∇jf(x) := (∂f(x)/∂xj)ej be the coordinatewise derivative
of f(x), where ej ∈ R

d is the jth unit coordinate vector.
An important feature of coordinatewise derivatives is that
∇jf(x�) = 0 since we know that ∇f(x�) = 0. This is unlike
the derivative for each data point ∇fj that may be different

8The modern interest in coordinate ascent/descent methods began
with [51], which considered coordinatewise GD with randomly cho-
sen coordinates and included a result showing linear convergence for
L-smooth strongly convex functions. This led to an explosion of work
on the problem; as for many problem structures, we can very efficiently
compute coordinatewise GD steps [63]

1974 PROCEEDINGS OF THE IEEE | Vol. 108, No. 11, November 2020

Authorized licensed use limited to: Skolkovo Institute of Science & Technology. Downloaded on June 10,2021 at 07:54:19 UTC from IEEE Xplore. Restrictions apply.

Gower et al.: Variance-Reduced Methods for Machine Learning

than zero at x�. Due to this feature, we have that

�∇f(x) −∇jf(x)�2 −→
x→x�

0. (26)

Thus, coordinatewise derivative satisfies the VR prop-
erty (12). Furthermore, we can also use ∇jf(x) to build an
unbiased estimate of ∇f(x). For instance, let j be a random
index sampled uniformly on average from {1, . . . , d}. Thus,
for any given i ∈ {1, . . . , d}, we have that P [j = i] = (1/d).
Consequently, d×∇jf(x) is an unbiased estimate of ∇f(x)

since

E [d∇jf(x)] = d

d�
i=1

P [j = i]
∂f(x)

∂xi
ei =

d�
i=1

∂f(x)

∂xi
ei

= ∇f(x).

Thus, ∇jf(x) has all the favorable properties that we
would like for a VR estimate of the full gradient without
using covariates. The downside of using this coordinate-
wise gradient is that, for our sum-of-terms problem (2),
it is expensive to compute. This is because computing
∇jf(x) requires a full pass over the data since

∇jf(x) =
1

n

n�
i=1

∇jfi(x).

Thus, it would seem that using coordinatewise derivatives
is incompatible with the structure of our sum-of-terms
problem. Fortunately though, we can often rewrite our
original problem (2) in what is known as a dual formu-
lation where coordinatewise derivatives can make use of
the inherent structure.

To illustrate, the dual formulation of the L2-regularized
linear models of the form (15) is given by

v� ∈ argmax
v∈Rn

�
1

n

n�
i=1

−��
i (−vi) − λ

2
� 1

λn

n�
i=1

viai�
2
�

(27)

where ��
i (v) := supx{�x, v� − f(x)} is the convex conju-

gate of �i. We can recover the x variable of our original
problem (15) using the mapping

x =
1

λn

n�
i=1

viai.

Consequently, plugging in the solution v� to (27) in
the right-hand side of the above gives x�, the solution
of (15).

Notice that this dual problem has n real variables vi ∈ R,
one for each training example. Furthermore, each dual
loss function ��

i in (27) is a function of a single vi only.
That is, the first term in the loss function is separable
over coordinates. It is this separability over coordinates,

combined with the simple form of the second term, that
allows for an efficient implementation of a coordinate
ascent method.9 Indeed, Shalev-Shwartz and Zhang [70]
showed that coordinate ascent on this dual problem has an
iteration complexity of O((κmax + n) log(1/ε)), similar to
SAG, SAGA, and SVRG.10 The iteration cost and algorithm
structure are also quite similar: by keeping track of the
sum

�n
i=1 viai to address the second term in (27), each

dual coordinate ascent iteration only needs to consider
a single training example, and the cost per iteration is
independent of n. Furthermore, we can use a 1-D line
search to efficiently compute a stepsize that maximally
increases the dual objective as a function of one vi. This
means that the fast worst case runtime of VR methods
can be achieved with no knowledge of Lmax or related
quantities.

Unfortunately, the SDCA method also has several dis-
advantages. First, it requires computing the convex con-
jugates ��

i rather than simply gradients. We do not have an
equivalent of automatic differentiation for convex conju-
gates, so this may increase the implementation effort. More
recent works have presented “dual-free” SDCA methods
that do not require the conjugates and instead work with
gradients [69]. However, it is no longer possible to track
the dual objective in order to set the stepsize in these
methods. Second, while SDCA only requires O(n + d)

memory for problem (15), SAG/SAGA also only requires
O(n + d) memory for this problem class (see Section III).
Variants of SDCA that applies to more general problems
have the O(nd) memory of SAG/SAGA since the vi become
vectors with d-elements. A final subtle disadvantage of
SDCA is that it implicitly assumes that the strong convexity
constant μ is equal to λ. For problems where μ is greater
than λ, the primal VR methods often significantly outper-
form SDCA.

III. P R A C T I C A L C O N S I D E R AT I O N S
In order to implement the basic VR methods and to obtain
a reasonable performance, several implementation issues
must be addressed. In this section, we discuss several issues
that are not addressed above.

A. Setting the Step Size for SAG/SAGA/SVRG

While we can naturally use the dual objective to set the
stepsize for SDCA, the theory for the primal VR methods
SAG/SAGA/SVRG relies on stepsizes of the form γ =

O(1/Lmax). Yet, in practice, one may not know Lmax,
and better performance can often be obtained with other
stepsizes.

One classic strategy for setting the stepsize in full-GD
methods is the Armijo line search [3]. Given a current point
xk and a search direction gk, the Armijo line search for a

9We call it “coordinate ascent” instead of “coordinate descent”
since (27) is a maximization problem.

10This iteration complexity is in terms of the duality gap. Related
results for certain problem structures include [10] and [74].

Vol. 108, No. 11, November 2020 | PROCEEDINGS OF THE IEEE 1975

Authorized licensed use limited to: Skolkovo Institute of Science & Technology. Downloaded on June 10,2021 at 07:54:19 UTC from IEEE Xplore. Restrictions apply.

Gower et al.: Variance-Reduced Methods for Machine Learning

γk is on the line γk ∈ {γ : xk + γgk} and gives a sufficient
decrease of the function

f(xk + γkgk) < f(xk) − cγk�∇f(xk)�2. (28)

This requires calculating f(xk +γkgk) on several candidate
stepsizes γk, which is prohibitively expensive since evalu-
ating f(x) requires a full pass over the data.

Thus, instead of using the full function f(x), we can use
a stochastic variant where we look for γk such that

fik (xk + γkgk) < fik (xk) − cγk�∇fik (xk)�2. (29)

This is used in the implementation of [65] with c =

(1/2) on iterations where �∇fik (xk)� is not close to zero.
It often works well in practice with appropriate guesses
for the trial stepsizes although no theory exists for the
method.

Alternatively, Mairal [44] considers the “Bottou trick”
for setting the stepsize in practice.11 This method takes a
small sample of the data set (typically 5%) and performs
a binary search that attempts to find the optimal stepsize
when performing one pass through this sample. Similar
to the Armijo line search, the stepsize obtained with this
method tends to work well in practice, but no theory is
known for the method.

B. Termination Criteria

Iteration complexity results provide theoretical worst
case bounds on the number of iterations to reach a certain
accuracy. However, these bounds depend on constants that
we may not know, and in practice, the algorithms tend
to require fewer iterations than indicated by the bounds.
Thus, we should consider tests to decide when the algo-
rithm should be terminated.

In classic full-GD methods, we typically consider the
norm of the gradient �∇f(xk)� or some variation on
this quantity to decide when to stop. We can naturally
implement these same criteria to decide when to stop an
SVRG method, by using �∇f(x̄s)�. For SAG/SAGA, we do
not explicitly compute any full gradients, but the quantity
ḡk converges to ∇f(xk), so a reasonable heuristic is to
use �ḡk� in deciding when to stop. In the case of SDCA,
with a small amount of extra bookkeeping, it is possible
to track the gradient of the dual objective at no additional
asymptotic cost. Alternately, a more principled approach
is to track the duality gap, which adds an O(n) cost per
iteration but leads to termination criteria with a duality
gap certificate of optimality. An alternative principled
approach based on optimality conditions for strongly con-
vex objectives is used in the MISO method [44] based on a
quadratic lower bound [41].

11Introduced publicly by Léon Bottou during his tutorial on SGD
methods at NeurIPS 2017.

C. Reducing Memory Requirement

Although SVRG removes the memory requirement of
earlier VR methods, in practice, SAG/SAGA requires fewer
iterations than SVRG on many problems. Thus, we might
consider whether there exist problems where SAG/SAGA
can be implemented with less than O(nd) memory. In this
section, we consider the class of linear models, where the
memory requirement can be reduced substantially.

Consider linear models where fi(x) = �i(a
�
i x). Differ-

entiating gives

∇fi(x) = ��i(a
�
i x)ai.

Provided we already have access to the feature vectors
ai, it is sufficient to store the scalars �i(a

�
i x) in order

to implement the SAG/SAGA method. This reduces the
memory requirements from O(nd) down to O(n). SVRG
can also benefit from this structure of the gradients: by
storing those n scalars, we can reduce the number of
gradient evaluations required per SVRG “inner” iteration
to 1 for this problem class.

There exist other problem classes, such as probabilistic
graphical models, where it is possible to reduce the mem-
ory requirements [66].

D. Sparse Gradients

For problems where the gradients ∇fi(x) have many
zero values (e.g., for linear models with sparse fea-
tures), the classical SGD update may be implemented
with complexity, which is linear in the number of
nonzero components in the corresponding gradient, which
is often much less than d. This possibility is lost
in plain VR methods. However, there are two known
fixes.

The first one, described by Schmidt et al. [65, Sec. 4.1],
takes advantage of the simple form of the updates to imple-
ment a “just-in-time” variant where the iteration cost is
proportional to the number of nonzeroes. For SAG (but this
applies to all variants), this is done by not explicitly storing
the full vector vik after each iteration. Instead, in each
iteration, we only compute the elements vik

j corresponding
to nonzero elements, by applying the sequence of updates
to each variable v

ik
j since the last iteration where it was

nonzero.
The second one, described by Leblond et al.

[38, Section 2] for SAGA, adds an extra randomness
to the update xk+1 = xk − γ(∇fik (xk) −∇fik (x̄ik) + ḡk),
where ∇fik (xk) and ∇fik (x̄ik) are sparse, but ḡk is dense.
The components of the dense term (ḡk)j , j = 1, . . . , d, are
replaced by wj(ḡk)j , where w ∈ R

d is a random sparse
vector whose support is included in one of the ∇fik (xk)

and, in expectation, is the constant vector of all ones. The
update remains unbiased (but is now sparse), and the
added variance does not impact the convergence rate;
the details are given by Leblond et al. [38].

1976 PROCEEDINGS OF THE IEEE | Vol. 108, No. 11, November 2020

Authorized licensed use limited to: Skolkovo Institute of Science & Technology. Downloaded on June 10,2021 at 07:54:19 UTC from IEEE Xplore. Restrictions apply.

Gower et al.: Variance-Reduced Methods for Machine Learning

IV. A D V A N C E D A L G O R I T H M S
In this section, we consider extensions of the basic VR
methods. Some of these extensions generalize the basic
methods to handle more general scenarios, such as prob-
lems that are not smooth and/or strongly convex. Other
extensions use additional algorithmic tricks or problem
structure to design faster algorithms than the basic meth-
ods.

A. Hybrid SGD and VR Methods

The convergence rate ρ of the VR methods depends on
the number of training examples n. This is in contrast
to the convergence rates of classic SGD methods that are
sublinear but do not have a dependence on n. This means
that VR methods can perform worse than classic SGD
methods in the early iterations when n is very large. For
example, in Fig. 1, we can see that SGD is competitive with
the two VR methods throughout the first 10 epochs (passes
over the data).

Several hybrid SGD and VR methods have been proposed
to improve the dependence of VR methods on n. Konečný
and Richtárik [32] and Le Roux et al. [37] analyzed SAG
and SVRG, respectively, when initialized with n iterations
of SGD. This does not change the convergence rate but
significantly improves the dependence on n in the constant
factor. However, this requires setting the stepsize for these
initial SGD iterations, which is more complicated than
setting the stepsize for VR methods.12

More recently, several methods have been explored,
which guarantee both a linear convergence rate depending
on n, as well as a sublinear convergence rate that does
not depend on n. For example, Lei and Jordan [39] show
that this “best of both worlds” result can be achieved
for the “practical” SVRG variant where we use a growing
minibatch approximation of ∇f(x̄).

B. Nonuniform Sampling

Instead of improving the dependence on n, a variety of
works have focused on improving the dependence on the
Lipschitz constants Li by using nonuniform sampling of the
random training example ik. In particular, these algorithms
bias the choice of ik toward the larger Li values. This
means that examples whose gradients can change more
quickly are sampled more often. This is typically combined
with using a larger stepsize that depends on the average of
the Li values rather than the maximum Li value. Under
an appropriate choice of the sampling probabilities and
stepsize, this leads to improved iteration complexities of
the form

O((κmean + n) log(1/ε))

12The implementation of Schmidt et al. [65] does not use this trick.
Instead, it replaces n in line 7 of Algorithm II-B with the number of
training examples that have been sampled at least once. This leads to
similar performance and is more difficult to analyze but avoids needing
to tune an additional stepsize.

which depends on κmean := ((1/n)
�

i Li)/μ rather than
on κmax = (maxi Li)/μ. This improved rate under nonuni-
form sampling has been shown for the basic VR methods
SVRG [81], SDCA [60], and SAGA [25], [66].

Virtually, all existing methods use fixed probability dis-
tribution over {1, . . . , n} throughout the iterative process.
However, it is possible to further improve on this choice by
adaptively changing the probabilities during the execution
of the algorithm. The first VR method of this type, ASDCA,
was developed by Csiba et al. [12] and is based on updat-
ing the probabilities in SDCA by using what is known as
the dual residue.

Schmidt et al. [65] present an empirical method that
tries to estimate local values of the Li (which may
be arbitrarily smaller than the global values) and show
impressive gains in experiments. A related method with
a theoretical backing that uses local Li estimates is pre-
sented by Vainsencher et al. [76].

C. Minibatching

Another strategy to improve the dependence on the Li

values is to use minibatching, analogous to the classic mini-
batch SGD method (7), to obtain a better approximation
of the gradient. There are a number of ways of doing
minibatching, but here we will focus on a fixed batch-size
chosen uniformly at random. That is, let b ∈ N, and we
choose a set Bk ⊂ {1, . . . , n} with |Bk| = b with uniform
probability from all sets with b elements. We can now
implement the VR method by replacing each ∇fi(x

k) with
a minibatch estimate given by (1/b)

�
i∈Bk

∇fi(x
k).

There were a variety of early minibatch methods [26],
[27], [31], [75], but the most recent methods are
able to obtain an iteration complexity of the form [19],
[58], [60], [68]

O
�L(b)

μ
+

n

b

�
log

�
1

ε

�
(30)

using a stepsize of γ = O(1/L(b)), where

L(b) =
1

b

n − b

n − 1
Lmax +

n

b

b − 1

n − 1
L (31)

is a minibatch smoothness constant first defined in [24]
and [25]. This iteration complexity interpolates between
the complexity of full-GD when L(n) = L and VR methods
where L(1) = Lmax. Since L ≤ Lmax ≤ nL, it is
possible that L � Lmax. Thus, using larger minibatches
allows for the possibility of large speedups, especially in
settings where we can use parallel computing to evaluate
multiple gradients simultaneously. However, computing L

is typically more challenging than computing Lmax.
For generalized linear models (15) with ��� < M ,

we have that L ≤ Mλmax(AA�), where A = [a1, . . . , an] ∈
R

d×n and λmax(·) is the largest eigenvalue function. The
largest eigenvalue can be computed using a reduced SVD

Vol. 108, No. 11, November 2020 | PROCEEDINGS OF THE IEEE 1977

Authorized licensed use limited to: Skolkovo Institute of Science & Technology. Downloaded on June 10,2021 at 07:54:19 UTC from IEEE Xplore. Restrictions apply.

Gower et al.: Variance-Reduced Methods for Machine Learning

at a cost of O(d2 n) or by using a few iterations of the
power method to get an approximation. Unfortunately, for
some problems, this cost may negate the advantage of
using minibatches. In such a case, we could replace L with
the upper bound (1/n)

�n
i=1 Li. However, this may be a

very conservative upper bound.

D. Accelerated Variants

An alternative strategy for improving the dependence
on κmax is Nesterov or Polyak acceleration (also known as
momentum). It is well known that Nesterov’s accelerated
GD improves the iteration complexity of the full-gradient
method from O(κ log(1/ε)) to O(

√
κ log(1/ε)) [50].

Although we might naively hope to see the same improve-
ment for VR methods, replacing the κmax dependence with√

κmax, we now know that the best complexity that we
can hope to achieve is O((

√
nκmax + n) log(1/ε)) [36],

[80], which was first achieved by an accelerated SDCA
method [71]. Nevertheless, this complexity still guarantees
better worst case performance in ill-conditioned settings
(where κmax � n).

A variety of VR methods have been proposed that
incorporate an acceleration step in order to achieve this
improved complexity (see [1], [71], and [85]). Moreover,
the “catalyst” framework of Lin et al. [41] can be used to
modify any method achieving the complexity O((κmax +

n) log(1/ε)) to an accelerated method with a complexity of
O((

√
nκmax + n) log(1/ε)).

E. Relaxing Smoothness

A variety of methods have been proposed that relax
the assumption that f is L-smooth. The first of these
was the SDCA method, which can still be applied to (2)
even if the functions {fi} are nonsmooth. This is because
the dual remains a smooth problem. A classic example
is the SVM loss, where fi(x) = max{0, 1 − bia

�
i x}. This

leads to a convergence rate of the form O(1/ε) rather
than O(log(1/ε)), so does not give a worst case advantage
over classic SGD methods. However, unlike classic SGD
methods, we can optimally set the stepsize when using
SDCA. Indeed, prior to the new wave of VR methods, dual
coordinate ascent methods have been among the most
popular approaches for solving SVM problems for many
years. For example, the widely popular libSVM package [7]
uses a dual coordinate ascent method.

One of the first ways to handle nonsmooth problems
that preserves the linear convergence rate was through the
use of proximal-gradient methods. These methods apply
when f has the form f(x) = 1n

�n
i=1 fi(x) + Ω(x). In this

framework, it is assumed that f is L-smooth and that the
regularizer Ω is convex on its domain. However, the func-
tion Ω may be nonsmooth and may enforce constraints
on x. However, Ω must be “simple” in the sense that it
is possible to efficiently compute its proximal operator

applied to step of GD, that is,

xk+1 = argmin
x∈Rd

1

2
�x − (xk − γ∇f(xk))�2 + γΩ(x) (32)

should be relatively inexpensive to compute. The above
method is known as the proximal-gradient algorithm
[11, see, e.g.,], and it achieves the iteration complexity
O(κ log(1/ε)) even though Ω (and consequently f) is not
L-smooth or even necessarily differentiable. A common
example where (32) can be efficiently computed is the
L1-regularizer, where Ω(x) = λ�x�1 for some regulariza-
tion parameter λ > 0.

A variety of works have shown analogous results for
proximal variants of VR methods. These works essentially
replace the iterate update by an update of the above
form, with ∇f(xk) replaced by the relevant approxima-
tion gk. This leads to iteration complexities of O((κmax +

n) log(1/ε)) for proximal variants of SAG/SAGA/SVRG if
the functions fi are Li smooth [13], [81].

Several authors have also explored combinations of VR
methods with the alternating direction method of multipli-
ers (ADMM) approaches [86], which can achieve improved
rates in some cases where Ω does not admit an efficient
proximal operator. Several authors have also considered
the case where the individual fi may be nonsmooth,
replacing them with a smooth approximation [1, see]. This
smoothing approach does not lead to linear convergence
rates but leads to faster sublinear rates that are obtained
with SGD methods on nonsmooth problems (even with
smoothing).

F. Relaxing Strong Convexity

While we have focused on the case where f is strongly
convex and each fi is convex, these assumptions can be
relaxed. For example, if f is convex but not strongly
convex, then early works showed that VR methods achieve
a convergence rate of O(1/k) [13], [32], [43], [44], [65].
This is the same rate achieved by GD under these assump-
tions and is faster than the O(1/

√
k) rate of SGD in this

setting.
Alternatively, more recent works replace strong convex-

ity with weakened assumptions, such as the PL-inequality
and KL-inequality [57], which include standard problems,
such as (unregularized) least squares, where it is still
possible to show linear convergence [21], [29], [61], [62].

G. Nonconvex Problems

Since 2014, a sequence of articles have gradually
relaxed the convexity assumptions on the functions fi and
f and adapted the variance reduction methods to achieve
state-of-the-art complexity results for several different non-
convex settings. Here, we summarize some of these results,
starting with the setting closest to the strongly convex
setting and gradually relaxing any such convexity assump-
tions. For a more detailed discussion, see [15] and [87].

1978 PROCEEDINGS OF THE IEEE | Vol. 108, No. 11, November 2020

Authorized licensed use limited to: Skolkovo Institute of Science & Technology. Downloaded on June 10,2021 at 07:54:19 UTC from IEEE Xplore. Restrictions apply.

Gower et al.: Variance-Reduced Methods for Machine Learning

The first assumption that we relax is the convexity of
the fi functions. The first work in this direction was for
solving the PCA problem where the individual fi functions
are nonconvex [18], [72]. Both Garber and Hazan [18]
and Shalev-Shwartz [69] then showed how to use the
catalyst framework [41] to devise algorithms with an
iteration complexity of O(n+n3/4

√
Lmax/

√
μ) log(1/ε) for

Li–smooth nonconvex fi functions so long as their aver-
age f is μ-strongly convex. Recently, this complexity was
shown to match the lower bound in this setting [87]. Allen-
Zhu [2] took a step further and relaxed the assumption
that f is strongly convex and, instead, allowed f to be sim-
ply convex or even have “bounded nonconvexity” (strong
convexity but with a negative parameter −μ). To tackle this
setting, Allen-Zhu [2] proposed an accelerated variant of
SVRG that achieves state-of-the-art complexity results that
recently have been shown to be optimal [87].13

Even more recently, the convexity assumptions on f

have been completely dropped. By only assuming that fi ’s
are smooth and f has a lower bound, Fang et al. [15]
present an algorithm based on the continuous update (25)
that finds an approximate stationary point such that
E
��∇f(x)�2� ≤ ε using O(n +

√
n/ε2) iterations. Concur-

rently to this, Zhou et al. [88] presented a more involved
variant of SVRG that uses multiple reference points and
achieves the same iteration complexity. Fang et al. [15]
also provided a lower bound showing that the preceding
complexity is optimal under these assumptions.

An interesting source of nonconvex functions is the
problems where the objective is a composition of functions
f(g(x)), where g : R

d → R
m is a mapping. Even when both

f and g are convex, their composition may be nonconvex.
There are several interesting applications where either g

is itself an average (or even expectation) of maps or f

is an average of functions, or even both [40]. In this
setting, the finite sum structures can also be exploited to
develop VR methods, most of which are based on variants
of SVRG. In the setting where g is a finite sum, state-of-
the-art complexity results have been achieved using the
continuous update (25) (see [83]).

H. Second-Order Variants

Inspired by Newton’s method, there are now second-
order variants of the VR methods of the form

xk+1 = xk − γkHkgk (33)

where Hk ∈ R
d×d is an estimate of the inverse Hessian

matrix ∇2 f(xk)−1. The challenge in designing such meth-
ods is finding an efficient way to update Hk that results
in a sufficiently accurate estimate and does not cost too
much. This is a difficult balance to achieve; if Hk is a

13Note that, when assuming that f has a bounded nonconvexity,
the complexity results are with respect to finding a point xk ∈ R

d such
that E

�
‖∇f(xk)‖2

�
≤ ε.

poor estimate, it may do more damage to the convergence
of (33) than help. On the other hand, expensive routines
for updating Hk can make the method inapplicable when
the number of data points is large.

Though difficult, the rewards are potentially high. The
second-order methods can be invariant (or at least insen-
sitive) to coordinate transformations and ill-conditioned
problems. This is in contrast to the first-order methods that
often require some feature engineering, preconditioning,
and data preprocessing to converge.

Most of the second-order VR methods are based on the
BFGS quasi-Newton update [5], [16], [20], [73].

The first stochastic BFGS method that makes use of
subsampling was the online L-BFGS method [67] that
uses subsampled gradients to approximate Hessian-vector
products. The regularized BFGS method [46], [47] also
makes use of stochastic gradients and further modifies the
BFGS update by adding a regularizer to the Hk matrix.

The first method to use subsampled Hessian-vector
products in the BFGS update, as opposed to using differ-
ences of stochastic gradients, was the SQN method [6].
Moritz et al. [48] then proposed combining SQN with
SVRG. The resulting method performs very well in numer-
ical tests and was the first example of a second-order
VR method with a proven linear convergence, though
with a significantly worse complexity than the O(κmax +

n) log(1/�) rate of the VR methods. Moritz et al.’s [48]
method was later extended to a block quasi-Newton vari-
ant and analyzed with an improved complexity by Gower
et al. [23]. There are also specialized variants for the
nonconvex setting [78]. These second-order quasi-Newton
variants of the VR methods are hard to analyze, and as
far as we are aware, there exist no quasi-Newton variants
of (33), which has an update cost independent of n and is
proved to have a better global complexity than O((κmax +

n) log(1/ε)) of VR methods.
However, there do exist stochastic Newton-type meth-

ods, such as stochastic dual newton ascent (SDNA) [59],
which performs minibatch-type Newton steps in the dual
space, with a cost that is independent of n and does have
a better convergence rate than SDCA. Furthermore, more
recently, Kovalev et al. [34] proposed a minibatch Newton
method with a local linear convergence rate of the form
O((n/b) log(1/ε)) that is independent of the condition
number, where b is the minibatch size. Yet another
line of stochastic second-order methods is being devel-
oped by combining variance reduction techniques with the
cubic regularized Newton method [53]. These methods
replace both the Hessian and gradient by VR estimates
and then minimize, at each iteration, an approximation
of the second-order Taylor expansion with an additional
cubic regularizer. What is particularly promising about
these methods is that they achieve state-of-the-art sample
complexity, in terms of accesses gradients and Hessians of
individual functions fi, for finding second-order stationary
points for smooth nonconvex problems [79], [89]. This is
currently a very active direction of research.

Vol. 108, No. 11, November 2020 | PROCEEDINGS OF THE IEEE 1979

Authorized licensed use limited to: Skolkovo Institute of Science & Technology. Downloaded on June 10,2021 at 07:54:19 UTC from IEEE Xplore. Restrictions apply.

Gower et al.: Variance-Reduced Methods for Machine Learning

V. D I S C U S S I O N A N D L I M I TAT I O N S
In Section IV, we presented a variety of extensions of the
basic VR methods. We presented these as separate exten-
sions, but many of them can be combined. For example,
we can have an algorithm that uses minibatching and
acceleration while using a proximal-gradient framework to
address nonsmooth problems. The literature has now filled
out most of these combinations.

Note that classic SGDmethods apply to the general prob-
lem of minimizing a function of the form f(x) = Ezf(x, z)

for some random variable z. In this work, we have focused
on the case of the training error, where z can only take n

values. However, in machine learning, we are ultimately
interested in the test error where z may come from a
continuous distribution. If we have an infinite source of
examples, we can use them within SGD to directly optimize
the test loss function. Alternatively, we can treat our n

training examples as samples from the test distribution,
and then, doing one pass of SGD through the training
examples can be viewed as directly making progress on
the test error. Although it is not possible to improve on
the test error convergence rate by using VR methods,
several works show that VR methods can improve the
constants in the test error convergence rate compared with
SGD [17], [26].

We have largely focused on the application of VR
methods to linear models while mentioning several other
important machine learning problems, such as graphical
models and principal component analysis. One of the
most important applications in machine learning where
VR methods have had a little impact is in training deep
neural networks. Indeed, recent work shows that VR may
be ineffective at speeding up the training of deep neural
networks [14]. On the other hand, VR methods are now
finding applications in a variety of other machine learning
applications, including policy evaluation for reinforcement
learning [56], [77], [82], expectation maximization [9],
simulations using Monte Carlo methods [90], saddle point
problems [55], and generative adversarial networks [8].

A P P E N D I X A
L E M M A S
Here, we provide and prove several auxiliary lemmas.

Lemma 1: Let fi(x) be convex and Lmax-smooth for
i = 1, . . . , n. Let i be sampled uniformly on average from
{1, . . . , n}. It follows that, for every x ∈ R

d, we have that:

Ek[�∇fi(x) −∇fi(x�)�2] ≤ 2Lmax(f(x) − f(x�)). (34)

Proof: Since fi is convex, we have that

fi(z) ≥ fi(x�) + �∇fi(x�), z − x�� ∀z ∈ R
d (35)

and since fi is smooth we have that (see [52, Sec. 2.1.1]
for more equivalent ways of re-writing convexity

and smoothness)

fi(z)≤fi(x)+�∇fi(x), z − x�+Lmax

2
�z − x�2 ∀z, x ∈ R

d.

(36)
It follows for all x, z ∈ R

d that:

fi(x�) − fi(x) = fi(x�) − fi(z) + fi(z) − fi(x)
(35)+(36)

≤ �∇fi(x�), x� − z� + �∇fi(x), z − x�
+

Lmax

2
�z − x�2.

To get the tightest upper bound on the right-hand side,
we can minimize the right-hand side in z, which gives

z = x − 1

Lmax
(∇fi(x) −∇fi(x�)). (37)

Substituting this in the above equation gives

fi(x�) − fi(x)

=

�
∇fi(x�), x� − x +

1

Lmax
(∇fi(x) −∇fi(x�))

�

− 1

Lmax
�∇fi(x),∇fi(x) −∇fi(x�)�

+
1

2Lmax
�∇fi(x) −∇fi(x�)�2

= �∇fi(x�), x� − x�
− 1

2Lmax
�∇fi(x) −∇fi(x�)�2.

Taking expectation over i in the above and using that
Ei[fi(x)] = f(x) and E [∇fi(x�)] = 0 give the result.

Lemma 2: Let X ∈ R
d be a random vector with finite

variance. It follows that:

E
��X − E [X]�2

� ≤ E
��X�2

�
. (38)

Proof:

E
��X − E [X]�2

�
= E

��X�2
�− 2E [�X�]2 + E [�X�]2

= E
��X�2�− E [�X�]2 ≤ E

��X�2�.
(39)

A P P E N D I X B
C O N V E R G E N C E P R O O F
I L L U S T R AT E D V I A SGD�

For all VR methods, the first steps of proving convergence
are the same. First, we expand

�xk+1 − x��2 = �xk − x� − γgk�2

= �xk − x��2 − 2γ �xk − x�, gk� + γ2�gk�2.

1980 PROCEEDINGS OF THE IEEE | Vol. 108, No. 11, November 2020

Authorized licensed use limited to: Skolkovo Institute of Science & Technology. Downloaded on June 10,2021 at 07:54:19 UTC from IEEE Xplore. Restrictions apply.

Gower et al.: Variance-Reduced Methods for Machine Learning

Now, taking expectation conditioned on xk and using (6),
we arrive at

Ek[�xk+1 − x��2] = �xk − x��2 + γ2Ek[�gk�2]

− 2γ �xk − x�,∇f(xk)� .

Using either convexity or strong convexity, we can get rid
of the �xk − x�,∇f(xk)� term. In particular, since f(x) is
μ-strongly convex, we have

Ek[�xk+1 − x��2] ≤ (1 − μγ)�xk − x��2 + γ2Ek[�gk�2]

− 2γ(f(xk) − f(x�)). (40)

To conclude the proof, we need a bound on the second
moment Ek[�gk�2] of gk. For the plain vanilla SGD, often
it is simply assumed that this variance term is bounded
uniformly by an unknown constant B > 0. However, this
assumption rarely holds in practice, and even when it does,
the resulting convergence speed depends on this unknown
constant B. In contrast, for a VR method, we can explicitly
control the second moment of gk since we can control the
variance of gk and

Ek[�gk −∇f(xk)�2] = E
��gk�2

�− �∇f(xk)�2. (41)

To illustrate, we now prove the convergence of SGD�.
Theorem 1 [22]: Consider the iterates of SGD� (13).

If Assumptions 1 and 2 hold and γ ≤ (1/Lmax), then the
iterates converge linearly with

E
��xk+1 − x��2� ≤ (1 − γμ)E

��xk − x��2�. (42)

Thus, the iteration complexity of SGD� is given by

k ≥ Lmax

μ
log

�
1

ε

�
⇒ E

��xk − x��2
�

�x0 − x��2
< ε. (43)

Proof: Using Lemma 1, we have

Ek[�gk�2] = Ek[�∇fi(xk) −∇fi(x�)�2]

≤ 2Lmax(f(xk) − f(x�)). (44)

Using the above in (40), we have

Ek[�xk+1 − x��2] ≤ (1 − μγ)�xk − x��2

+ 2γ(γLmax − 1)(f(xk) − f(x�)).

(45)

Now, by choosing γ ≤ (1/Lmax), we have that γLmax −
1 < 0, and consequently, 2γ(γLmax − 1)(f(xk) − f(x�)) is
negative since f(xk) − f(x�) ≥ 0. Thus, it now follows by
taking expectation in (45) that

E
��xk+1 − x��2� ≤ (1 − μγ)E

��xk − x��2�.

This proof also shows that the shifted SGD method is a
VR method. Indeed, since

E
��gk −∇f(xk)�2� = E

��∇fi(xk)−∇fi(x�)−∇f(xk)�2�
≤ E

��∇fi(xk) −∇fi(x�)�2
�

≤ 2Lmax(f(xk) − f(x�))

where, in the first inequality, we used Lemma 2 with X =

∇fi(xk) −∇fi(x�).

A c k n o w l e d g m e n t
The authors would like to thank Quanquan Gu, Julien
Mairal, Tong Zhang, and Lin Xiao for valuable suggestions
and comments on an earlier draft of this article. In par-
ticular, Quanquan’s recommendations for the nonconvex
section improved the organization of our Section IV-G.

R E F E R E N C E S
[1] Z. Allen-Zhu, “Katyusha: The first direct

acceleration of stochastic gradient methods,”
J. Mach. Learn. Res., vol. 18, no. 1, pp. 8194–8244,
Jan. 2017.

[2] Z. Allen-Zhu, “Natasha: Faster non-convex
stochastic optimization via strongly non-convex
parameter,” in Proc. Int. Conf. Mach. Learn., vol. 70,
Aug. 2017, pp. 89–97.

[3] L. Armijo, “Minimization of functions having
Lipschitz continuous first partial derivatives,”
Pacific J. Math., vol. 16, no. 1, pp. 1–3, Jan. 1966.

[4] D. Blatt, A. O. Hero, and H. Gauchman,
“A convergent incremental gradient method with a
constant step size,” SIAM J. Optim., vol. 18, no. 1,
pp. 29–51, Jan. 2007.

[5] C. G. Broyden, “Quasi-Newton methods and their
application to function minimisation,” Math.
Comput., vol. 21, no. 99, pp. 368–381, 1969.

[6] R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer,
“A stochastic quasi-Newton method for large-scale
optimization,” SIAM J. Optim., vol. 26, no. 2,
pp. 1008–1031, Jan. 2016.

[7] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for

support vector machines,” ACM Trans. Intell. Syst.
Technol., vol. 2, no. 3, pp. 1–27, Apr. 2011.

[8] T. Chavdarova, G. Gidel, F. Fleuret, and
S. Lacoste-Julien, “Reducing noise in GAN training
with variance reduced extragradient,” in Proc. Adv.
Neural Inf. Process. Syst., 2019, pp. 393–403.

[9] J. Chen, J. Zhu, Y. W. Teh, and T. Zhang, “Stochastic
expectation maximization with variance reduction,”
in Proc. Adv. Neural Inf. Process. Syst., 2018,
pp. 7967–7977.

[10] M. Collins, A. Globerson, T. Koo, X. Carreras, and
P. L. Bartlett, “Exponentiated gradient algorithms
for conditional random fields and max-margin
Markov networks,” J. Mach. Learn. Res., vol. 9,
pp. 1775–1822, Jul. 2008.

[11] P. L. Combettes and J.-C. Pesquet, “Proximal
splitting methods in signal processing,” in
Fixed-Point Algorithms for Inverse Problems in
Science and Engineering. New York, NY, USA:
Springer, 2011, pp. 185–212.

[12] D. Csiba, Z. Qu, and P. Richtárik, “Stochastic dual
coordinate ascent with adaptive probabilities,” in
Proc. 32nd Int. Conf. Mach. Learn., 2015,

pp. 674–683.
[13] A. Defazio, F. Bach, and S. Lacoste-Julien,

“SAGA: A fast incremental gradient method with
support for non-strongly convex composite
objectives,” in Proc. Adv. Neural Inf. Process. Syst.,
2014, pp. 1646–1654.

[14] A. Defazio and L. Bottou, “On the ineffectiveness of
variance reduced optimization for deep learning,”
in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 1755–1765.

[15] C. Fang, C. J. Li, Z. Lin, and T. Zhang, “SPIDER:
Near-optimal non-convex optimization via
stochastic path-integrated differential estimator,” in
Proc. Adv. Neural Inf. Process. Syst., 2018,
pp. 689–699.

[16] R. Fletcher, “A new approach to variable metric
algorithms,” Comput. J., vol. 13, no. 3,
pp. 317–323, 1970.

[17] R. Frostig, R. Ge, S. M. Kakade, and A. Sidford,
“Competing with the empirical risk minimizer in a
single pass,” in Proc. Conf. Learn. Theory, 2015,
pp. 728–763.

[18] D. Garber and E. Hazan, “Fast and simple PCA via

Vol. 108, No. 11, November 2020 | PROCEEDINGS OF THE IEEE 1981

Authorized licensed use limited to: Skolkovo Institute of Science & Technology. Downloaded on June 10,2021 at 07:54:19 UTC from IEEE Xplore. Restrictions apply.

Gower et al.: Variance-Reduced Methods for Machine Learning

convex optimization,” 2015, arXiv:1509.05647.
[Online]. Available:
http://arxiv.org/abs/1509.05647

[19] N. Gazagnadou, R. M. Gower, and J. Salmon,
“Optimal mini-batch and step sizes for SAGA,” in
Proc. 36th Int. Conf. Mach. Learn., vol. 97, 2019,
pp. 2142–2150.

[20] D. Goldfarb, “A family of variable-metric methods
derived by variational means,” Math. Comput.,
vol. 24, no. 109, pp. 23–26, 1970.

[21] P. Gong and J. Ye, “Linear convergence of
variance-reduced stochastic gradient without
strong convexity,” 2014, arXiv:1406.1102.
[Online]. Available:
http://arxiv.org/abs/1406.1102

[22] E. Gorbunov, F. Hanzely, and P. Richtarik, “A unified
theory of SGD: Variance reduction, sampling,
quantization and coordinate descent,” in Proc.
Mach. Learn. Res., vol. 108, S. Chiappa and R.
Calandra, Eds. PMLR, Aug. 2020, pp. 680–690.

[23] R. M. Gower, D. Goldfarb, and P. Richtárik,
“Stochastic block BFGS: Squeezing more curvature
out of data,” in Proc. 33rd Int. Conf. Mach. Learn.,
vol. 48, 2016, pp. 1869–1878.

[24] R. M. Gower, N. Loizou, X. Qian, A. Sailanbayev,
E. Shulgin, and P. Richtárik, “SGD: General analysis
and improved rates,” in Proc. 36th Int. Conf. Mach.
Learn., vol. 97, 2019, pp. 5200–5209.

[25] R. M. Gower, P. Richtárik, and F. Bach, “Stochastic
quasi-gradient methods: Variance reduction via
Jacobian sketching,” Math. Program., May 2020.
[Online]. Available:
https://link.springer.com/article/10.1007%2Fs10107-
020-01506-0

[26] R. Harikandeh, M. O. Ahmed, A. Virani,
M. Schmidt, J. Konečný, and S. Sallinen, “Stop
wasting my gradients: Practical SVRG,” in Proc.
Adv. Neural Inf. Process. Syst., 2015, pp. 2251–2259.

[27] T. Hofmann, A. Lucchi, S. Lacoste-Julien, and
B. McWilliams, “Variance reduced stochastic
gradient descent with neighbors,” in Proc. Neural
Inf. Process. Syst., 2015, pp. 2305–2313.

[28] R. Johnson and T. Zhang, “Accelerating stochastic
gradient descent using predictive variance
reduction,” in Proc. Adv. Neural Inf. Process. Syst.,
2013, pp. 315–323.

[29] H. Karimi, J. Nutini, and M. Schmidt, “Linear
convergence of gradient and proximal-gradient
methods under the Polyak-Lojasiewicz condition,”
in Proc. Joint Eur. Conf. Mach. Learn. Knowl.
Discovery Databases. Springer, 2016, pp. 795–811.

[30] D. P. Kingma and J. Ba, “Adam: A method for
stochastic optimization,” in Proc. 3rd Int. Conf.
Learn. Represent. (ICLR), 2015, pp. 1–13.

[31] J. Konečný, J. Liu, P. Richtárik, and M. Takáč,
“Mini-batch semi-stochastic gradient descent in the
proximal setting,” IEEE J. Sel. Topics Signal Process.,
vol. 10, no. 2, pp. 242–255, Mar. 2016.

[32] J. Konečný and P. Richtárik, “Semi-stochastic
gradient descent methods,” CoRR,
vols. abs/1312.1666, pp. 1–9, May 2013.

[33] D. Kovalev, S. Horváth, and P. Richtárik, “Don’t
jump through hoops and remove those loops: SVRG
and Katyusha are better without the outer loop,” in
Proc. 31st Int. Conf. Algorithmic Learn. Theory,
2020, pp. 451–467.

[34] D. Kovalev, K. Mishchenko, and P. Richtárik,
“Stochastic Newton and cubic Newton methods
with simple local linear-quadratic rates,” in Proc.
NeurIPS Beyond 1st Order Methods Workshop, 2019,
pp. 1–16.

[35] A. Kulunchakov and J. Mairal, “Estimate sequences
for variance-reduced stochastic composite
optimization,” in Proc. Int. Conf. Mach. Learn.,
2019, pp. 3541–3550.

[36] G. Lan and Y. Zhou, “An optimal randomized
incremental gradient method,” Math. Program.,
vol. 171, nos. 1–2, pp. 167–215, Sep. 2018.

[37] R. N. Roux, M. Schmidt, and F. Bach, “A stochastic
gradient method with an exponential convergence
rate for finite training sets,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 2663–2671.

[38] R. Leblond, F. Pedregosa, and S. Lacoste-Julien,
“ASAGA: Asynchronous parallel SAGA,” in Proc. Int.
Conf. Artif. Intell. Statist. (AISTATS), 2017,

pp. 46–54.
[39] L. Lei and M. Jordan, “Less than a single pass:

Stochastically controlled stochastic gradient,” in
Proc. Int. Conf. Artif. Intell. Statist. (AISTATS), 2017,
pp. 148–156.

[40] X. Lian, M. Wang, and J. Liu, “Finite-sum
composition optimization via variance reduced
gradient descent,” in Proc. Int. Conf. Artif. Intell.
Statist., 2017, pp. 1159–1167.

[41] H. Lin, J. Mairal, and Z. Harchaoui, “Catalyst
acceleration for first-order convex optimization:
From theory to practice,” J. Mach. Learn. Res.,
vol. 18, no. 212, pp. 1–54, 2018.

[42] S. Lohr, Sampling: Design and Analysis. Duxbury
Press, 1999.

[43] M. Mahdavi and R. Jin, “MixedGrad: An O(1/T)
convergence rate algorithm for stochastic smooth
optimization,” 2013, arXiv:1307.7192. [Online].
Available: http://arxiv.org/abs/1307.7192

[44] J. Mairal, “Incremental majorization-minimization
optimization with application to large-scale
machine learning,” SIAM J. Optim., vol. 25, no. 2,
pp. 829–855, Jan. 2015.

[45] Y. Malitsky and K. Mishchenko, “Adaptive gradient
descent without descent,” 2019, arXiv:1910.09529.
[Online]. Available:
http://arxiv.org/abs/1910.09529

[46] A. Mokhtari and A. Ribeiro, “RES: Regularized
stochastic BFGS algorithm,” IEEE Trans. Signal
Process., vol. 62, no. 23, pp. 1109–1112, Dec. 2014.

[47] A. Mokhtari and A. Ribeiro, “Global convergence of
online limited memory BFGS,” J. Mach. Learn. Res.,
vol. 16, no. 1, pp. 3151–3181, 2015.

[48] P. Moritz, R. Nishihara, and M. I. Jordan,
“A linearly-convergent stochastic L-BFGS
algorithm,” in Proc. Int. Conf. Artif. Intell. Statist.,
2016, pp. 249–258.

[49] D. Needell, N. Srebro, and R. Ward, “Stochastic
gradient descent, weighted sampling, and the
randomized Kaczmarz algorithm,” Math. Program.,
vol. 155, nos. 1–2, pp. 549–573, Jan. 2016.

[50] Y. Nesterov, “A method for solving a convex
programming problem with convergence rate
O(1/k2),” Sov. Math. Doklady, vol. 27, no. 2,
pp. 372–376, 1983.

[51] Y. Nesterov, “Efficiency of coordinate descent
methods on huge-scale optimization problems,”
SIAM J. Optim., vol. 22, no. 2, pp. 341–362,
Jan. 2012.

[52] Y. Nesterov, Introductory Lectures Convex
Optimization: A Basic Course, 2nd ed. New York,
NY, USA: Springer, 2014.

[53] Y. Nesterov and T. B. Polyak, “Cubic regularization
of newton method and its global performance,”
Math. Program., vol. 108, pp. 177–205, Apr. 2006.

[54] L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takáč,
“SARAH: A novel method for machine learning
problems using stochastic recursive gradient,” in
Proc. 34th Int. Conf. Mach. Learn., vol. 70, 2017,
pp. 2613–2621.

[55] B. Palaniappan and F. Bach, “Stochastic variance
reduction methods for saddle-point problems,” in
Proc. Adv. Neural Inf. Process. Syst., 2016,
pp. 1416–1424.

[56] M. Papini, D. Binaghi, G. Canonaco, M. Pirotta, and
M. Restelli, “Stochastic variance-reduced policy
gradient,” in Proc. 35th Int. Conf. Mach. Learn.,
vol. 80, 2018, pp. 4026–4035.

[57] B. Polyak, “Gradient methods for the minimisation
of functionals,” in Proc. USSR Comput. Math. Math.
Phys., vol. 3, 1963, pp. 864–878.

[58] X. Qian, Z. Qu, and P. Richtárik, “SAGA with
arbitrary sampling,” in Proc. 36th Int. Conf. Mach.
Learn., 2019, pp. 5190–5199.

[59] Z. Qu, P. Richtárik, M. Takáč, and O. Fercoq,
“SDNA: Stochastic dual Newton ascent for
empirical risk minimization,” in Proc. 33rd Int.
Conf. Mach. Learn., 2016, pp. 1823–1832.

[60] Z. Qu, P. Richtárik, and T. Zhang, “Quartz:
Randomized dual coordinate ascent with arbitrary
sampling,” in Proc. 28th Int. Conf. Neural Inf.
Process. Syst., 2015, pp. 865–873.

[61] S. J. Reddi, A. Hefny, S. Sra, B. Póczos, and
A. Smola, “Stochastic variance reduction for
nonconvex optimization,” in Proc. 33rd Int. Conf.

Mach. Learn., vol. 48, 2016, pp. 314–323.
[62] S. J. Reddi, S. Sra, B. Poczos, and A. Smola, “Fast

incremental method for smooth nonconvex
optimization,” in Proc. IEEE 55th Conf. Decis.
Control (CDC), Dec. 2016, pp. 1971–1977.

[63] P. Richtárik and M. Takáč, “Iteration complexity of
randomized block-coordinate descent methods for
minimizing a composite function,” Math. Program.,
vol. 144, no. 1, pp. 1–38, Dec. 2012.

[64] H. Robbins and S. Monro, “A stochastic
approximation method,” Ann. Math. Statist.,
vol. 22, no. 3, pp. 400–407, Sep. 1951.

[65] M. Schmidt, N. Le Roux, and F. Bach, “Minimizing
finite sums with the stochastic average gradient,”
Math. Program., vol. 162, nos. 1–2, pp. 83–112,
2017.

[66] M. W. Schmidt, R. Babanezhad, M. O. Ahmed,
A. Defazio, A. Clifton, and A. Sarkar, “Non-uniform
stochastic average gradient method for training
conditional random fields,” in Proc. 18th Int. Conf.
Artif. Intell. Statist. (AISTATS), 2015, pp. 819–828.

[67] N. N. Schraudolph and G. Simon, “A stochastic
quasi-Newton method for online convex
optimization,” in Proc. 11th Int. Conf. Artif. Intell.
Statist., 2007, pp. 436–443.

[68] O. Sebbouh, N. Gazagnadou, S. Jelassi, F. Bach, and
R. M. Gower, “Towards closing the gap between the
theory and practice of SVRG,” in Proc. Adv. Neural
Inf. Process. Syst., 2019, pp. 646–656.

[69] S. Shalev-Shwartz, “SDCA without duality,
regularization, and individual convexity,” in Proc.
33rd Int. Conf. Mach. Learn., vol. 48, 2016,
pp. 747–754.

[70] S. Shalev-Shwartz and T. Zhang, “Stochastic dual
coordinate ascent methods for regularized loss,”
J. Mach. Learn. Res., vol. 14, no. 1, pp. 567–599,
2013.

[71] S. Shalev-Shwartz and T. Zhang, “Accelerated
proximal stochastic dual coordinate ascent for
regularized loss minimization,” in Proc. Int. Conf.
Mach. Learn., 2014, pp. 64–72.

[72] O. Shamir, “A stochastic PCA and SVD algorithm
with an exponential convergence rate,” in Proc.
32nd Int. Conf. Mach. Learn. (ICML), vol. 37, 2015,
pp. 144–152.

[73] D. F. Shanno, “Conditioning of quasi-Newton
methods for function minimization,” Math.
Comput., vol. 24, no. 111, pp. 647–656, 1971.

[74] T. Strohmer and R. Vershynin, “A randomized
Kaczmarz algorithm with exponential
convergence,” J. Fourier Anal. Appl., vol. 15, no. 2,
p. 262, 2009.

[75] M. Takáč, A. Bijral, P. Richtárik, and N. Srebro,
“Mini-batch primal and dual methods for SVMs,” in
Proc. 30th Int. Conf. Mach. Learn., 2013,
pp. 537–552.

[76] D. Vainsencher, H. Liu, and T. Zhang, “Local
smoothness in variance reduced optimization,” in
Proc. Adv. Neural Inf. Process. Syst., 2015,
pp. 2179–2187.

[77] H.-T. Wai, M. Hong, Z. Yang, Z. Wang, and K. Tang,
“Variance reduced policy evaluation with smooth
function approximation,” in Proc. Adv. Neural Inf.
Process. Syst., 2019, pp. 5776–5787.

[78] X. Wang, S. Ma, D. Goldfarb, and W. Liu,
“Stochastic quasi-Newton methods for nonconvex
stochastic optimization,” SIAM J. Optim., vol. 27,
no. 2, pp. 927–956, 2017.

[79] Z. Wang, Y. Zhou, Y. Liang, and G. Lan, “Stochastic
variance-reduced cubic regularization for
nonconvex optimization,” 2018, arXiv:1802.07372.
[Online]. Available:
http://arxiv.org/abs/1802.07372

[80] B. E. Woodworth and N. Srebro, “Tight complexity
bounds for optimizing composite objectives,” in
Proc. Adv. Neural Inf. Process. Syst., 2016,
pp. 3639–3647.

[81] L. Xiao and T. Zhang, “A proximal stochastic
gradient method with progressive variance
reduction,” SIAM J. Optim., vol. 24, no. 4,
pp. 2057–2075, Jan. 2014.

[82] P. Xu, F. Gao, and Q. Gu, “An improved convergence
analysis of stochastic variance-reduced policy
gradient,” in Proc. 35th Conf. Uncertainty Artif.
Intell., 2019, pp. 541–551.

1982 PROCEEDINGS OF THE IEEE | Vol. 108, No. 11, November 2020

Authorized licensed use limited to: Skolkovo Institute of Science & Technology. Downloaded on June 10,2021 at 07:54:19 UTC from IEEE Xplore. Restrictions apply.

Gower et al.: Variance-Reduced Methods for Machine Learning

[83] J. Zhang and L. Xiao, “Stochastic variance-
reduced prox-linear algorithms for nonconvex
composite optimization,” Microsoft, Albuquerque,
NM, USA, Tech. Rep. MSR-TR-2020-11,
2020.

[84] L. Zhang, M. Mahdavi, and R. Jin, “Linear
convergence with condition number independent
access of full gradients,” in Proc. Adv. Neural Inf.
Process. Syst., 2013, pp. 980–988.

[85] Y. Zhang and L. Xiao, “Stochastic primal-dual
coordinate method for regularized empirical risk

minimization,” J. Mach. Learn. Res., vol. 18, no. 1,
pp. 2939–2980, Jan. 2017.

[86] L. W. Zhong and J. T. Kwok, “Fast stochastic
alternating direction method of multipliers,” in
Proc. 31st Int. Conf. Mach. Learn., vol. 32, 2014,
pp. 46–54.

[87] D. Zhou and Q. Gu, “Lower bounds for smooth
nonconvex finite-sum optimization,” in Proc. Int.
Conf. Mach. Learn., 2019, pp. 7574–7583.

[88] D. Zhou, P. Xu, and Q. Gu, “Stochastic nested
variance reduced gradient descent for nonconvex

optimization,” in Proc. Adv. Neural Inf. Process.
Syst., 2018, pp. 3921–3932.

[89] D. Zhou, P. Xu, and Q. Gu, “Stochastic
variance-reduced cubic regularization methods,”
J. Mach. Learn. Res., vol. 20, no. 134, pp. 1–47,
2019.

[90] D. Zou, P. Xu, and Q. Gu, “Stochastic
gradient Hamiltonian Monte Carlo methods
with recursive variance reduction,” in
Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 3835–3846.

A B O U T T H E A U T H O R S

Robert M. Gower received the bachelor’s
and master’s degrees in applied mathemat-
ics from the State University of Campinas,
Campinas, Brazil, in 2009 and 2011, respec-
tively.
He is currently a Visiting Researcher with

Facebook AI Research, New York, NY, USA.
He joined Télécom Paris, Paris, France, as an
Assistant Professor, in 2017. He is interested
in designing and analyzing new stochastic algorithms for solving
big data problems in machine learning and scientific computing. He
designed the current state-of-the-art algorithms for automatically
calculating high-order derivatives using backpropagation.

Mark Schmidt is currently an Associate
Professor with the Department of Com-
puter Science, The University of British
Columbia, Vancouver, BC, Canada. His
research focuses on machine learning and
numerical optimization.
Dr. Schmidt is the Canada Research

Chair, the Alfred P. Sloan Fellow, and the
CIFAR Canada AI Chair with the Alberta
Machine Intelligence Institute (Amii) and was awarded the
SIAM/MOS Lagrange Prize in continuous optimization with Nicolas
Le Roux and Francis Bach.

Francis Bach graduated from École
Polytechnique, Palaiseau, France, in 1997.
He received the Ph.D. degree in computer
science from the University of California
at Berkeley, Berkeley, CA, USA, in 2005,
working with Prof. Michael Jordan.
He is currently a Researcher with Inria,

Paris, France, leading the Machine Learning
Team, since 2011, which is a part of the
Computer Science Department, École Normale Supérieure. He
spent two years in the Mathematical Morphology Group, École des
Mines de Paris, Paris. He was with the Computer Vision Project-
Team, Inria/École Normale Supérieure, from 2007 to 2010. He
is primarily interested in machine learning, and especially in
sparse methods, kernel-based learning, large-scale optimization,
computer vision, and signal processing.
Dr. Bach obtained a Starting Grant in 2009 and a Consolidator

Grant in 2016 from the European Research Council. He received
the Inria Young Researcher Prize in 2012, the ICML Test-of-Time
Award in 2014, the Lagrange Prize in continuous optimization
in 2018, and the Jean-Jacques Moreau Prize in 2019. In 2015,
he was the Program Co-Chair of the International Conference in
Machine learning (ICML) and the General Chair in 2018. He is also
the Co-Editor-in-Chief of the Journal of Machine Learning Research.

Peter Richtárik received the Ph.D. degree
from Cornell University, Ithaca, NY, USA,
in 2007.
He was a Postdoctoral Fellow with the

Université Catholique de Leuven, Leuven,
Belgium, before joining The University of
Edinburgh, Edinburgh, U.K., in 2009, and
the King Abdullah University of Science and
Technology (KAUST), Thuwal, Saudi Arabia,
in 2017. He is currently a Professor of computer science and math-
ematics with KAUST. He is also an EPSRC Fellow in mathematical
sciences, a Fellow of the Alan Turing Institute, and is with the Visual
Computing Center and the Extreme Computing Research Center,
KAUST. His research interests lie at the intersection of mathematics,
computer science, machine learning, optimization, numerical linear
algebra, and high-performance computing. Through his recent work
on randomized decomposition algorithms (such as randomized
coordinate descent methods, stochastic gradient descent methods
and their numerous extensions, improvements, and variants), he
has contributed to the foundations of the emerging field of big data
optimization, randomized numerical linear algebra, and stochastic
methods for empirical risk minimization.
Dr. Richtárik’s articles attracted international awards to his

collaborators, including the SIAM SIGEST Best Paper Award, the IMA
Leslie Fox Prize (second prize, three times), and the INFORMS
Computing Society Best Student Paper Award (sole runner up).

Vol. 108, No. 11, November 2020 | PROCEEDINGS OF THE IEEE 1983

Authorized licensed use limited to: Skolkovo Institute of Science & Technology. Downloaded on June 10,2021 at 07:54:19 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [576.000 782.640]
>> setpagedevice

